Morphine-induced mu opioid receptor trafficking enhances reward yet prevents compulsive drug use
نویسندگان
چکیده
Morphine, heroin and other commonly abused opioids induce little mu opioid receptor (MOR) trafficking compared to endogenous opioids. We utilized knock-in mice expressing a mutant recycling MOR (RMOR) that desensitizes and is internalized in response to morphine to show that facilitating MOR trafficking not only enhances morphine reward but, despite this, reduces the development of addiction-like behaviours. To demonstrate this, we developed a novel model of the transition from controlled to compulsive drug use that recapitulates many features of human addiction, including persistent drug seeking despite adverse consequences and a decreased preference for alternative rewards. These behaviours emerged spontaneously in wild-type but not RMOR mice, and their intensity predicted the reinstatement of morphine seeking after extended abstinence, while prior morphine intake did not. These results confirm previous findings in the rat that addiction can be dissociated from both reward and consumption. Most importantly, these results demonstrate that one can simultaneously reduce the 'addictiveness' of morphine and enhance its desirable effects by promoting agonist-induced MOR trafficking.
منابع مشابه
The role of mu opioid receptors in psychomotor stimulation and conditioned place preference induced by morphine-6-glucuronide.
Previous studies have shown that morphine-6-glucuronide (M6G), a metabolite of morphine, induces reward and psychomotor stimulation but the role of the mu opioid receptor in these actions of the drug is not fully characterized. Thus, using mice lacking exon-2 of the mu opioid receptor and their wild-type littermates/controls, we determined the role of this receptor in psychomotor stimulation, s...
متن کاملThe role of opioid receptor phosphorylation and trafficking in adaptations to persistent opioid treatment.
Mu-opioid receptor activation underpins clinical analgesia and is the central event in the abuse of narcotics. Continued opioid use produces tolerance to the acute effects of the drug and adaptations that lead to physical and psychological dependence. Continued mu-receptor signaling provides the engine for these adaptations, with most evidence suggesting that chronic agonist treatment produces ...
متن کاملAn opioid agonist that does not induce mu-opioid receptor--arrestin interactions or receptor internalization.
G protein-coupled receptor desensitization and trafficking are important regulators of opioid receptor signaling that can dictate overall drug responsiveness in vivo. Furthermore, different mu-opioid receptor (muOR) ligands can lead to varying degrees of receptor regulation, presumably because of distinct structural conformations conferred by agonist binding. For example, morphine binding produ...
متن کاملAn Opiate Cocktail that Reduces Morphine Tolerance and Dependence
Morphine is an exceptionally effective analgesic whose utility is compromised by the development of tolerance and dependence to the drug. Morphine analgesia and dependence are mediated by its activity at the mu opioid peptide (MOP) receptor [1]. The MOP receptor is activated not only by morphine, but also by other opiate drugs such as methadone and endogenous opioids such as endorphins. Morphin...
متن کاملNeurokinin 1 receptors regulate morphine-induced endocytosis and desensitization of mu-opioid receptors in CNS neurons.
mu-Opioid receptors (MORs) are G-protein-coupled receptors (GPCRs) that mediate the physiological effects of endogenous opioid neuropeptides and opiate drugs such as morphine. MORs are coexpressed with neurokinin 1 receptors (NK1Rs) in several regions of the CNS that control opioid dependence and reward. NK1R activation affects opioid reward specifically, however, and the cellular basis for thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2011